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Rust for C# Programmers

Duration

5 days

Description

The Rust for C# Developers course offers a seamless transition for experienced C# developers 
looking to unlock the power of Rust. Leveraging your existing knowledge in object-oriented 
programming, this course introduces you to Rust’s innovative features, including its ownership 
model, memory safety, and fine-grained control over system resources. Explore Rust’s syntax, 
libraries, and tools while mastering concepts like pattern matching, concurrency, and error 
handling. By the end of this course, you’ll be well-equipped to harness Rust’s strengths, 
enabling you to write high-performance and secure systems-level software, making it an 
essential journey for C# developers seeking to broaden their programming horizons.

Objectives
• Understand the Rust Philosophy
• Set Up and Navigate the Rust Environment
• Explore Rust within the context of C#
• Grasp Basic Rust Syntax and Semantics
• Learn Control Flow and Logic
• Learn Ownership and Borrowing Concepts
• Utilize Tuples, Enums, Structs, and Vectors
• Employ Pattern Matching
• Harness Rust’s Concurrency Model
• Create Custom Macros
• Write Rust Tests
• Create Documentation with Rustdoc

Prerequisites
• Proficiency in Python programming
• Basic understanding of programming concepts such as variables, expressions, functions, 

and control flow
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Training Materials

All students receive comprehensive courseware covering all topics in the course. Courseware is 
distributed via GitHub in the form of documentation and extensive code samples. Students 
practice the topics covered through challenging hands-on lab exercises.

Software Requirements

Students will need a free, personal GitHub account to access the courseware. Students will 
need permission to install Rust and Visual Studio Code on their computers. Also, students will 
need permission to install Rust Crates and Visual Studio Extensions. If students are unable to 
configure a local development environment, a cloud-based environment can be provided.

Outline
• Introduction
• What is Rust?

– Rust’s Philosophy and Goals
– History and motivation
– Rust vs C# & .NET
– Rust Community
– The Rust Playground

• Install Rust
– Script
– macOS Homebrew
– Platform Installers

• Rust Editors
– VSCode with Extensions
– Rust Rover
– Debug Rust in VSCode
– GitHub Copilot

• Hello World
– Create a new Project
– Main Function
– Print to the Console
– Comments

• Cargo
– What is Cargo?
– How does Cargo compare to Pip and Conda?
– Rust Crates compared to Python Packages
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– Run Command
– Build Command
– Build Release Command
– Install Third-Party Crates

• Popular Cargo Crates
– Serde
– Tokio
– Reqwest
– SQLx
– Anyhow

• Rust and C# Differences
– Memory Management
– Error Handling
– Sequence, Selection, and Iteration
– Structs vs Classes
– Traits vs Protocols
– Generics
– Concurrency

• Scalar Types and Data
– Rust Types vs C# Types
– Constants
– Immutable Variables
– Mutable Variables

• Code Logic
– If Statement
– Loop with Break
– While Loop

• Functions
– Define a Function
– Call a Function
– Paramter Types
– Return Types
– Closure Functions

• Modules
– Import Modules from Standard Library
– Import Modules from Third-Party Crates
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– Define Custom Modules
– Import Custom Modules

• Built-In Macros
– print! and println!
– format!
– vec!
– include_str! and include_bytes!
– cfg! and env!
– panic!

• Memory Management
– Problems with Manual Management
– Problems with Garbage Collection
– Ownership & Borrowing
– Rust vs C#
– References
– Lifetimes

• Strings
– String Slices
– String Objects
– Convert Between Slices and Strings
– Parse Number from String
– Trim String
– Print Strings with Interpolation

• Tuples
– What is a Tuple?
– Rust Tuples vs. C# Tuples
– Heterogeneous Elements
– Access Elements
– Destructuring
– Immutable

• Enums
– What is an Enum?
– Rust Enums vs. C# Enums
– Define an Enum
– Using Enums
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– Enum Variants
– Enum Methods
– Enums and Pattern Matching
– Result Enum
– Option Enum
– Enums vs Structs

• Structs
– What is a Struct?
– Rust Structs vs. C# Structs
– Create Instance
– Field Init Shorthand
– Struct Update Syntax
– Tuple Structs
– Unit-Like Structs
– Ownership of Struct Data
– Function Implementation
– Associated Functions
– Stuct Methods
– Constructor Pattern

• Vectors
– What is a Vector?
– Rust Vectors vs. C# Lists
– Create a Vector
– Add and Remove Elements
– Access Elements
– Iterate over Elements
– Slicing, Length, and Capacity
– Common Vector Operations
– Understand Memory Management
– Ownership and Borrowing Rules

• Collections and Iterators
– Vectors, arrays, and slices
– HashMaps and hash sets
– Iteration and iterators

• Traits
– What is a trait?
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– How does a trait related to C# interfaces?
– Defining a trait
– Implementing a trait
– Default implementations
– Traits as parameters
– Traits as return types
– Traits as bounds

• Generics
– What is a generic?
– How does a generic related to C# generics?
– Defining a generic
– Implementing a generic
– Generic bounds
– Multiple generic types
– Where clauses

• Pattern Matching
– What is Pattern Matching?
– Match Statement
– If Let Statement
– While Let Statement
– Destructuring Stucts and Tuples
– Pattern Matching with Enums
– Pattern Matching with Functions
– Pattern Matching and Ownership
– Refutability and Irrefutability

• Concurrent Programming
– What is Concurrent Programming?
– Using Multiple Threads
– Mutex, RwLock, and Arc
– Message Passing with Channels
– Sync and Send Traits
– Futures and Async/Await

• Unsafe Rust
– What is Unsafe Rust?
– Raw Pointers
– Dereferencing Raw Pointers
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– Calling Unsafe Functions
– Creating Safe Abstractions
– Unsafe Traits
– Unsafe Blocks
– Unsafe Superpowers

• Macros and Metaprogramming
– What is a Macro?
– Define a Macro with macro_rules!
– Using Pattern Matching
– Define Expansion
– Use the Custom Macro

• Tests
– What is a Test?
– Test Functions
– Test Organization
– Test Attributes
– Test Coverage
– assert!, assert_eq!, and assert_ne!

• Documentation with Rustdoc
– What is Rustdoc?
– Add Documentation to Rust Code
– Triple-Slash Comments and the #[doc] Attribute
– Generate Documentation
– Linking and Cross-Referencing Documentation

• Conclusion
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